US009106514B1

a2z United States Patent (10) Patent No.: US 9,106,514 B1
Kanadam (45) Date of Patent: Aug. 11, 2015
(54) HYBRID NETWORK SOFTWARE PROVISION 7,152,105 B2 12/2006 McClure et al.
7,159,151 B2 1/2007 Morgan et al.
7,178,166 Bl 2/2007 Taylor et al.
(75) Inventor: Raghuram Kanadam, Sunnyvale, CA 7185232 Bl 22007 Lgvo; :t al
(US) 7,243,148 B2 7/2007 Keir et al.
(73) Assignee: SPIRENT COMMUNICATIONS, (Continued)
INC., Sunnyvale, CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this WO 2006/099536 9/2006
patent is extended or adjusted under 35
U.S.C. 154(b) by 266 days. OTHER PUBLICATIONS
. Wagner, D. et al., “Intrusion Detection via Static Analysis”, IEEE
(21) Appl. No.: 12/982,381 Symposium on Security and Privacy, 2001, pp. 156-168.
(22) Filed: Dec. 30,2010 (Continued)
(51) Int.ClL Primary Examiner — Jung Kim
GO6F 9/54 (2006.01) Assistant Examiner — Tri Tran
HO4L 12726 (2006.01) (74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
HO4L 29/08 (2006.01) LLP
(52) US.CL
CPC ..o HO4L 43/04 (2013.01); HO4L 67/32 (57) ABSTRACT
(2013.01); GOGF 9/54 (2013.01); H04é‘06193/“z)219 Various example embodiments are methods and devices for
. . . (D) providing an application from at least one remote machine to
(58) Field of Classification Search at least one local machine. The local machine may execute a
USPC s . 726/11-13 local executable that has access to local resources of the
See application file for complete search history. computer device. The local machine may also execute a
. browser configured to communicate with the at least one
(6 References Cited remote machine through a firewall. A connection may be
U.S. PATENT DOCUMENTS generated 1b.etween the browser and the lpcal exechable. The
local machine may download code for implementing a por-
5,067,104 A 11/1991 Krishnakumar et al. tion of the application from the at least one remote machine
2,332,383 ﬁ 1(1); }ggg gacctavatlel through the firewall. The code may be executed in the
485, upta et al.
5892.003 A 4/1999 Klaus browser. The browser may generate an instruction directing
6.088.804 A 7/2000 Hill et al. the local executable to act on the local resources of the com-
6:324:656 Bl 11/2001 Gleichauf et al. puter device. The instruction may be communicated to the
6,363,477 Bl 3/2002 Fletcher et al. local executable via the connection. The local executable may
6,546,554 B1* 4/2003 Schmidtetal. 717/176 act on the local resources of the computer device in response
g:g;ﬁ:zg; gé ggggg Eéﬁﬁgoéflj,t al. ;czélolfl érllls&rllécltézrall ig;iofler:tclérsn to the browser results of the
6,609,205 Bl 82003 Bernhard et al. :
6,654,914 Bl 11/2003 Kaffine et al.
6,952,779 B1 10/2005 Cohen et al. 24 Claims, 14 Drawing Sheets

Receive request for
applicalion access

;410
Request

| Transmit generally executable
:code to Browser across firewall

(-400

Initiate secure session with
browser :

<430
428 N T Vo :

US 9,106,514 B1
Page 2

(56)

7,257,630
7,272,650
7,290,145
7,315,801
7,342,892
7,346,922
7,421,621
7,447,966
7,451,488
7,471,999
7,509,675
7,512,125
7,536,456
7,536,605
7,543,056
7,607,170
7,624,422
7,627,891
7,627,900
7,664,845
7,673,043
7,774,637
7,954,161
7,958,230
7,958,560
8,001,532
2001/0034847
2002/0157041
2003/0051163
2003/0154399
2003/0159063
2004/0001443
2004/0068586
2004/0068675
2004/0103315
2004/0205557
2004/0230881
2005/0015213
2005/0044418
2005/0135391
2005/0144137
2005/0195820
2005/0248457
2005/0273772
2005/0273854
2005/0273859
2006/0005231
2006/0015941
2006/0015943
2006/0021034
2006/0021044
2006/0021045
2006/0021046
2006/0021047
2006/0021048
2006/0021049
2006/0036755
2006/0080733
2006/0085723
2006/0098579
2006/0106939
2006/0137009
2006/0277606
2007/0006037
2007/0011319
2007/0086389
2007/0094728
2007/0115962
2007/0174917
2007/0204347
2008/0005555
2008/0028416
2008/0072322
2008/0092237
2008/0098479

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
Bl
B2
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
B2
B2
Bl
Bl
B2
Bl
Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

*

8/2007
9/2007
10/2007
1/2008
3/2008
3/2008
9/2008
11/2008
11/2008
12/2008
3/2009
3/2009
5/2009
5/2009
6/2009
10/2009
11/2009
12/2009
12/2009
2/2010
3/2010
8/2010
5/2011
6/2011
6/2011
8/2011
10/2001
10/2002
3/2003
8/2003
8/2003
1/2004
4/2004
4/2004
5/2004
10/2004
11/2004
1/2005
2/2005
6/2005
6/2005
9/2005
11/2005
12/2005
12/2005
12/2005
1/2006
1/2006
1/2006
1/2006
1/2006
1/2006
1/2006
1/2006
1/2006
1/2006
2/2006
4/2006
4/2006
5/2006
5/2006
6/2006
12/2006
1/2007
1/2007
4/2007
4/2007
5/2007
7/2007
8/2007
1/2008
1/2008
3/2008
4/2008
4/2008

Cole et al.
Elgebaly et al.
Falkenthros
Dowd et al.
Soon et al.
Miliefsky
Zambrana

Kamannavar et al.

Cooper et al.
Taki

Aaron

Betts et al.
Williams et al.
Keaffaber et al.
McClure et al.
Chesla

Williams et al.
Williams et al.
Noel et al.

Kurtz et al.

Keir et al.
Beddoe et al.
Guruswamy et al.
Guruswamy et al.
Guruswamy

Jakubiak et al. 717/125

Gaul, Ir.
Bennett et al.
Bidaud

Zuk et al.
Apfelbaum et al.
Soon et al.

Xie et al.

Liu

Cooper et al.
Babhrs et al.
Gwak
Somervill et al.
Miliefsky

Sung

Kumar et al.
Betts et al.
Himberger et al.
Matsakis et al.
Chess et al.
Chess et al.

Zuk et al.
McKenna
Mahieu

Cook

Cook

Cook

Cook

Cook

Cook et al.
Cook

Abdullah et al.
Khosmood et al.
Bartz et al.
Chang et al.
Cha et al.
Chesla

Yunus et al.
Sargusingh et al.
McClure et al.
Park et al.
Julisch et al.
Mammoliti et al.
Guruswamy
Caceres et al.
Lotem et al.

Gilletal. ..o 719/311

Guruswamy
Yoon et al.
O’Rourke et al.

2008/0120283 Al
2008/0155338 Al
2008/0282352 Al
2009/0077471 Al*
2009/0083854 Al
2009/0271863 Al
2009/0320137 Al
2009/0328190 Al
2010/0030891 Al*
2010/0106742 Al
2010/0284282 Al
2010/0284283 Al
2010/0293415 Al
2011/0082802 Al*

5/2008 Liuet al.
6/2008 Rusmanov
11/2008 Beddoe et al.
3/2009 Lahretal.ccoooeennn. 715/748
3/2009 Bozanich et al.
10/2009 Govindavajhala et al.
12/2009 White et al.
12/2009 Liu et al.
2/2010 Kimetal.cooevveenne 709/224
4/2010 Guruswamy et al.
11/2010 Golic
11/2010 Golic et al.
11/2010 Beddoe et al.
4/2011 Baghdasaryan et al. 705/75

OTHER PUBLICATIONS

Finlay, I et al., “Multiple Vulnerabilities in Many Implementations of
the Simple Network Management Protocol (SNMP)”, CERT® Advi-
sory CA-2003-03, Pittsburgh, PA, US.

Griffin, J.L., “Testing Protocol Implementation Robustness”, Pub-
lished in the Proceedings of 29th Annual International Symposium
on Fault-Tolerant Computing (FTC), Jun. 15-18, 1999, Madison,
Wisconsin, US.

Kaksonen, R., “A Functional Method for Assessing Protocol Imple-
mentation Security”, VIT Publications 448, 2011, 128 p.+app. 15p.,
Technical Research Centre of Finland, FI.

Kaksonen, R., “Software Security Assessment through Specification
Mutations and Fault Injection”, Proceedings of the Int’l Federation
for Information Processing (IFIP), TC-6/TC-11 Fifth Joint Int’l
Working Conference on Communications and Multimedia Security
(CMS’01), May 21-22, 2001, Darmstadt, Germany, pp. 173-183.
Miller, B. et al., “Fuzz Revisited: A Re-examination ofthe Reliabiltiy
of Unix Utilities and Services”, Computer Sciences Department, Oct.
1995, pp. 1-23, Madison, Wisconsin, US.

PROTOS Test-Suite: c06-snmpv1, University of Oulu (ee.oulu.fi)—
http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv 1/
index, Oct. 17, 2002, pp. 1-26, Finland.

Beddoe, M., “Network Protocol Analysis using Bioinformatics Algo-
rithms”, 2004, retrieved on May 17, 2007, from <URL: http://www.
4tphi.net/~awalters/PL/pi.pdf>.

Case, J. et al., “A Simple Network Management Protocol (SNMP)”
(RFC 1157), May 1990, retrieved on May 17, 2007, from <URL:
http://’www.faqs.org/rfcs/rfc1157 html>.

Marquis, S., et al., “SCL: A Language for Security Testing of Net-
work Applications”, Proceedings: 15th IBM Centre for Advanced
Studies Conference (CASCON), Toronto, Canada, Oct. 2005, pp.
155-164, retrieved on May 17, 2007, from <URL: http://post.
queensu.ca/~trd/research/papers/marquisSCL.pdf>.

McCloghrie K. etal., “Structure of Management Information Version
2 (SMIv2)” (RFC 2578), Apr. 1999, retrieved on May 17, 2007, from
<URL: http://www.faqs.org/rfcs/rfc2578. html>.

Nevill-Manning, C. et al., “Identifying Hierarchical Structure in
Sequences: A linear-time algorithm”, Journal of Artificial Intelli-
gence Research, vol. 7, Sep. 1997, pp. 67-82, retrieved on May 17,
2007, from <URL: http://arxiv.org/abs/cs/9709102>.

Tal, O. et al., “Syntax-based Vulnerability Testing of Frame-based
Network Protocols”, Proceedings: 2nd Annual Conference on Pri-
vacy, Security and Trust, Fredericton, Canada, Oct. 2004, pp. 155-
160, retrieved on May 17, 2007, from <URL.: http://post.queensu.ca/
~trd/research/papers/Final PST04.pdf>.

Turcotte, Y. et al., “Security Vulnerabilities Assessment of the X.509
Protocol by Syntax-based Testing”, Military Communications Con-
ference (MILCOM), Monterey, CA, Oct. 2004, vol. 3, pp. 1572-
1578, retrieved from <URL.: http://post.queensu.ca/~trd/research/pa-
pers/MILCOM.pdf>.

Zhang, S. et al., “A Lightweight Approach to State Based Security
Testing”, Proceedings: 16th IBM Centre for Advanced Studies Con-
ference (CASCON), Toronto, Canada, Oct. 2006, Article No. 28,
retrieved on May 17, 2007, from <URL: http://post.queensu.ca/~trd/
research/papers/zhangState.pdf>.

Zhang, S. et al., “Applying Software Transformation Techniques to
Security Testing”, Proceedings: Software Technology and Engineer-

US 9,106,514 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

ing in Practice (STEP), Toronto, Canada, Oct. 2005, retrieved on May
17, 2007, from <URL: http://post.queensu.ca/~trd/research/papers/
step2005.pdf>.

Aitel, D., “An Introduction to SPIKE, the Fuzzer Creation Kit” (pre-
sentation slides), Aug. 1, 2002, Black Hat USA, Las Vegas, NV,
online, retrieved Jun. 26, 2007, from <URL: https://www.blackhat.
com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt>.

Beddoe, M., “Heuristics for Packet Field Identification”, Mu Security
Research Labs blog, Jan. 4, 2007, online, retrieved Jun. 26, 2007,
from <URL: http://labs.musecurity.com/2007/01/04/heuristics-for-
packet-field-identification/>.

Beddoe, M., “The Protocol Informatics Project: Automating Net-
work Protocol Analysis” (presentation slides), 2005.

Sonne, B., “Covert Channel detection using Bioinformatics Algo-
rithms”, nCircle 360 Security blog, May 11, 2006, online, retrieved
on Jun. 26, 2007, from <URL: http://blog.ncircle.com/archives/
2006/05/covert__channel_detection__using html>.

Beizer, B., “Chapter 9: Syntax Testing”, in Software Testing Tech-
niques, 2nd Ed., 1990, pp. 284-319, Van Nostrand Reinhold, New
York, NY.

Beizer, B., “Chapter 8: Syntax Testing”, in Black-Box Testing: Tech-
niques for Functional Testing of Software and Systems, 1995, pp.
177-201, John Wiley & Sons, Inc., New York, NY.

Kaksonen, R. et al., “Vulnerability Analysis of Software through
Syntax Testing”, 2000, online, retrieved on Sep. 1, 2006, from <URL:
http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-ro-
bustness/>.

Mu Security, “6 Degrees of Protocols”, 2006.

Mu Security, “Protocol Vulnerability Patterns”, Apr. 2006.

Rubin, S. et al., “On the Completeness of Attack Mutation Algo-
rithms”, 19th IEEE Computer Security Foundations Workshop
(CSFW), Jul. 2006, 14 pages, Online, retrieved on Jan. 19, 2010, from
<URL: http://pages.cs.wisc.edu/~jha/jha-papers/security/ CSFW__
2006.pdf>.

Turcotte, Y., “Syntax Testing of Communication Protocols for Secu-
rity Vulnerabilities (Testing of a subset of the Entrust PKI)”, Nov.
2003, online, retrieved on Sep. 1, 2006, from <URL: http://tarpit.rmc.
ca/paul/EEE491A%20Fall%202003/Slides/
EE491%20GL3%20Syntax%20Testing. ppt>.

Xiao, S. et al., “Integrated TCP/IP Protocol Software Testing for
Vulnerability Detection”, Proceedings of International Conference
on Computer Networks and Mobile Computing (ICCNMC’03), Oct.
20-23, 2003, Shanghai, China, pp. 311-319.

Bellovin, S. “A Technique for Counting NATted Hosts”, Proceed-
ings: Second Internet Measurement Workshop (IMW), Marseille,
France, Nov. 6-8, 2002, pp. 267-272.

Bradner, S. et al., “Benchmarching Methodology for Network Inter-
connect Devices (RFC__1994)”, May 1996, online, retrieved on May
12, 2006, from <URL.: http://rfc.net/rfc1944 html>.

Bradner, S. et al., Benchmarking Methodology for Network Inter-
connect Devices (RFC__2544), Mar. 1999, online retrieved on May
12, 2006, from <URL.: http://rfc.net/rfc2544 html>.

Cisco Systems, Inc., “Mobile IP—NAT Detect” in “Cisco 1I0S IP
Mobility Configuration Guide, Release 12.4, 2005, online,
retrieved on May 12, 2006, from <URL: http://www.cisco.com/
univercd/cc/td/doc/product/software/ios124/124cg/himo__c/ch05/
hnatrav.pdf>.

Dunn, J. et. al., “Methodology for ATM Benchmarking (RFC3116)”,
Jun. 2011, online, retrieved on May 12, 2006, from <URL.: http://rfc.
net/rfc3116.html>.

Egevang, K., etal., “The IP Network Address Translator (NAT) (RFC
1631)”, May 1994, online, retrieved on May 12, 2006, from <URL:
http://rfc.net/rfc3116 html>.

Microsoft Corp., “Overview of Network Address Translation (NAT)
in Windows XP”, Sep. 12, 2005, online, retrieved on May 12, 2006,
from <URL: http://www.microsoft.com/technet/prodtechnol/winxp-
pro/deploy/nattrnsw.mspx?pd=true>.

Netcom Systems, “SmartWindow User Guide Version 6 53”, Docu-
ment No.340-1020-001 REV C, Dec. 1999, online, retrieved on May
12, 2006, from <URL: https://www.cobra.ee.ntu.edu.tw/~oops/
HTML6/08__exp/smartbit%20reading.pdf>.

Nikolic, M., “Performance Measurements of Multimedia Transmis-
sions in IP over ATM Networks”, Master’s Thesis, School of Engi-
neering Science, Simon Fraser University, Dec. 2002, online,
retrieved on May 12, 2006, from <URL: http://142.58.111.30/~ljilja/
cnl/pdf/milan.pdf>.

Sorensen, S., “Intrusion Detection and Prevention Protecting Your
Network from Attacks”, Document No. 200065-002, 2006, online,
retrieved on May 12, 2006, from <URL: http://www.juniper.net/
solutions/literature/white papers/200065.pdf>.

Srisuresh, P. et al., “IP Network Address Translator (NAT) Terminol-
ogy and Considerations (RFC 2663)”, Aug. 1999, online, retrieved on
May 12, 2006, from <URL: http://rfc/net/rfc2663 html>.

Srisuresh, P. et al., “Traditional IP Network Address Translator (Tra-
ditional NAT) (RFC 3022)”, Jan. 2001, online, retrieved on May 12,
2006, from <URL: http://rfc.net/rfc3022 html>.

Trend Communications, “RFC 2544 Testing with Aurora Tango”,
date unknown, online, retrieved on May 12, 2006, from <URL:
http://www.trendtest.co.uk/trendweb/resource.nsf/vIFileURL-
Lookup/en%SE%SERFC+2544+testing/$FILE/GbEnet.2544 test.
pdf>.

Udupa, R. et al., “Performance Issues and Evaluation Techniques for
Networking Devices”, 2001, online, retrieved on May 12, 2006, from
URL: http://softwaredioxide.com/Channels/events/testing200 1/Pre-
sentations/raghavendra__infosys.pdf>.

PCT International Search Report and Written Opinion, PCT/US06/
09512, Aug. 31, 2006.

Wikipedia.com, Active Directory, http://en.wikipedia.org/wiki/Tun-
neling_ protocol.

Wikipedia.com, Active Directory, http://en.wikipedia.org/wiki/Ses-
sion__initiation.

Gordano.com, What is the SMTP/EHLO clause.

U.S. Appl. No. 11/514,809, filed Sep. 1, 2006.

U.S. Appl. No. 11/859,691, filed Sep. 21, 2007.

U.S. Appl. No. 11/351,402, filed Feb. 10, 2006.

U.S. Appl. No. 11/696,605, filed Apr. 4, 2007.

U.S. Appl. No. 13/153,797, filed Jun. 6, 2011.

U.S. Appl. No. 13/101,728, filed May 5, 2011.

U.S. Appl. No. 13/118,155, filed May 27, 2011.

U.S. Appl. No. 13/154,636, filed Jun. 7, 2011.

U.S. Appl. No. 13/095,807, filed Apr. 27, 2011.

U.S. Appl. No. 11/760,600, filed Jun. 8, 2007.

U.S. Appl. No. 12/234,450, filed Jun. 8, 2007.

U.S. Appl. No. 11/850,164, filed Sep. 5, 2007.

* cited by examiner

U.S. Patent Aug. 11, 2015 Sheet 1 of 14 US 9,106,514 B1

-
—_—
80
o 2
- ®

Z

FIREWALL
'

~100

108
Figure 1

Network

112
i
-

106

112

-
5
-~
| N
Data

112
112

~112
Data

US 9,106,514 B1

Sheet 2 of 14

Aug. 11, 2015

U.S. Patent

~

$90IN0SaY
(2007

/
/
7

91z

Z 9inbi4

FIREWALL

coz- | 4
J
uoneoyddy
|B007
oLz
Jasmo.ug
80z
“\\
0L

viz—

002-

X

0}~

9pIS djowdy

90}

US 9,106,514 B1

Sheet 3 of 14

Aug. 11, 2015

U.S. Patent

/

/ seoinosey

¢ ainbi4

/ 12207 A
/i
H A
| ®1genosx3]
90g- 1800 L
5>;M<nm>> 808 A
oLe- I W apIg djoway
Li]
¥0€-| Y
Y —
4 Jesmolig »
zoe- - \
v
, £ 4 el
poL- Z0L- .
00¢ N 90}

US 9,106,514 B1

Sheet 4 of 14

Aug. 11, 2015

U.S. Patent

zeh-

y 9inbi4

Ly

{

[lemaly SSOJ0B JASMOIE 01 8paD

HNS91 888004 L9ch
A
JOSMOIG LIYIIM 8p0o9
sjqenooxs Ajessush snosxg | 92V
A
8|qeNoaxe [8o0| B
YYM UOISSES 91n09s aleiiy| —QZPy
) 9l
8poo m opo :
ajgeinoaxa A|jeiauab aAloDoy o poO
bﬂ ~
sse0or uoneaydde jsenbay J1senbay
O

jnsel umney jinssy
s pEY--
992n0s8J |B0C| aje|ndiuey \ 1s9nbay 8vinosay
; -l ogep
'y
S oep
J3SMoIg
UUM UOISSOS 21noos ey
A
4
,_\ C
8Ly
9Q0F -
80Y-
g
00%-

POv-—

s|geinoaxs Aj|esoush pusues]

f

N ssaooe uonesydde

10} 189nbai aA1909Y

US 9,106,514 B1

Sheet 5 of 14

Aug. 11, 2015

U.S. Patent

1Nsel uIney

t gzg-

aoinosai (o0} ajeindiueiy

t oves

JBSMOIG
UUM UOISSOS SIN08S)R]

826

G ainbi4

“““““ jnsay > }INSal $§990.id 1 0eg
126 ' 915
i 9|gEINOaXd | 80IN0S$d1 [BD0] JO} 1S8Nnbal
1sanboay sninosay { 159nbay aoinosay
7 [e00] 0} 158nhas 82IN0SaI SSBY c UYIM UoIIoNIIsUE S1eiouas)
8LG- , 815 i
ozg® 1
SIGEINOSXS 8901 - - uopesydde aynoaxg
YUM UOISSSS 21N03s a1eniy| 92s y16"
a A
7/ 1sanbai
55909k uopedydde 1senbay Em:vmm sse00€ uoneoydde enposy
T — 015 R
806 ci5~
“\
_,// f\/\
¥0G- 200

US 9,106,514 B1

g 2.inbi4

OO0 3000

J0ED0X0

Sheet 6 of 14

Aug. 11, 2015

U.S. Patent

YT 0000 6000 G0FE JIE 003T 8802 0000 700G 10T00X0

CUEETTTT 000 TOTO SETS 0T00 S070 S0T0 6000 000 (0T00X0

SOTpTE 8391 8909 JRSY TTI0 0000 0000 FEO0 098F (0000%0
PZ WU "dAN 0TS GV ETT < 0TS FT 09T T6I AT T 809

TOT0 £0°0 8000 $000 JO00 0000 ‘0E00X0

........ P QOTH D010 2000 1000 FOG0 0000 00X 000G HTO0XT

T 000 G000 0000 0000 6922 $OT0 BOOD 0002 DT00XD

TR B3R 8RO AL 8570 0000 Q000 DE00 005 CO000XD

OF TSHR] OfPH dUDIH 0T 00T < $FT 09T T6T dI e
T 000 0000 0000 0000 0000 G000 D000 DTHOXO
T G000 6000 G8RT 880D 0000 0000 0000 SRT [DT00X0
e 8800 00FS 4S54T FO00 1000 $090 0080 1000 10000%0 s
OF WIBUA] "SFTOC 301 T6T R 6£1°0E' 891 T6T sey-oum sanbay gy

US 9,106,514 B1

Sheet 7 of 14

Aug. 11, 2015

U.S. Patent

00Z-

= 4

J ainbi4

<A LLH BRRPESDHY DTS

"L L HLLB0IAR98,,
W8T Qm@ﬁ Nﬁ: 3% Wﬁ

..m.:w%ﬁ:

U.S. Patent Aug. 11, 2015 Sheet 8 of 14 US 9,106,514 B1

SEPUER

px

1B

{m-,.ium:,,_;':%, T

%,

U.S. Patent Aug. 11, 2015 Sheet 9 of 14 US 9,106,514 B1

—800

Figure 9

802
902-

US 9,106,514 B1

Sheet 10 of 14

Aug. 11, 2015

U.S. Patent

¢001L-

0} 2.nbi4

P el ion

o bBisimE resnmaing

/
A

000}

US 9,106,514 B1

Sheet 11 of 14

Aug. 11, 2015

U.S. Patent

L1 @inbBi4

US 9,106,514 B1

Sheet 12 of 14

Aug. 11, 2015

U.S. Patent

Zl ainbig

41,

saelbup yipmsmeny doly,

US 9,106,514 B1

Sheet 13 of 14

Aug. 11,2015

U.S. Patent

¢l 9inbi4

et Yy

MRPEREL o1 1

ki R A SR L B

US 9,106,514 B1

Sheet 14 of 14

Aug. 11, 2015

U.S. Patent

1 @inbi4

5o

&

ST

US 9,106,514 B1

1
HYBRID NETWORK SOFTWARE PROVISION

BACKGROUND

Computer software applications are provided to users
according to various different models. With a packaged appli-
cation model, applications are executed directly by a local
machine. Executables and other data or files making up the
application are installed to the local machine from a network
or from a disk. Once installed, the application executes
locally and typically has access to the resources of the local
machine, including local data. Data processed by the appli-
cation is also stored locally, either at the local machine itself
or at other machines that are part of a common secured net-
work (e.g., a company or organizational network). Packaged
applications are local machine specific. Accordingly, an orga-
nization must purchase a license for each local machine that
will execute the application regardless of the number of users
or the frequency of use. Also, any updates, improvements,
bug-fixes, or new versions of the packaged applications must
be directly installed to each local machine. This limits the
degree to which packaged applications can be practically
maintained and upgraded.

Cloud computing provides an alternative application host-
ing paradigm that is often called software-as-a-service
(SaaS). According to cloud computing or SaaS techniques,
software applications are executed by remote servers. Local
machines access the remote servers, and the applications, via
a network, such as the Internet. The local machines execute a
client interface (e.g., either a standard web browser or a
dedicated client program that gives the local machines access
to the remotely executed SaaS application). Due to the nature
of'SaaS, changes made to an application at the remote servers
are distributed to all local users and machines without the
need to specifically load new data files to each local machine.
This makes it easier for providers and developers to generate
and distribute new features as well as standard bug-fixes and
other improvements. Because SaaS applications are hosted
remotely, however, it is necessary for data processed by the
application to be either transmitted to and/or accessible to the
remote servers, which are located outside of the local
machine and usually outside of a secure network. This creates
a strong disincentive for using cloud computing and/or SaaS
for processing that involves sensitive data. Also, depending
on the implementation, SaaS applications require the local
execution of dedicated plug-ins in order to access local
resources such as printers, speakers, etc. This further compli-
cates the use of SaaS applications in some environments.

FIGURES

Various example embodiments of the present invention are
described here by way of example in conjunction with the
following figures, wherein:

FIG. 1 illustrates one example embodiment of a computer
system that delivers an application to a local machine.

FIG. 2 illustrates one example embodiment of a network
showing the execution of a local application and a browser,
such as a web browser.

FIG. 3 illustrates one example embodiment of a network
showing the provision of an application from the remote side
to the local side.

FIG. 4 illustrates one example embodiment of a process
flow for providing a remotely hosted application to a local
machine and/or machines.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates another example embodiment of a pro-
cess flow for providing a remotely hosted application to a
local machine and/or machines.

FIG. 6 illustrates one example embodiment of a screen
showing captured communications packets.

FIG. 7 illustrates one example embodiment of a screen
showing statistics describing a packet capture.

FIG. 8 illustrates one example embodiment of a screen
showing results of a search of captured packets.

FIG. 9 illustrates one example embodiment of a screen
showing the search results of FIG. 8 with additional detail.

FIG. 10 illustrates one example embodiment of a screen
showing results of analysis of capture packets.

FIG. 11 illustrates one example embodiment of a screen
showing results of a packet traffic analysis.

FIG. 12 illustrates one example embodiment of a screen
showing an analysis of bandwidth usage by different network
nodes.

FIG. 13 illustrates one example embodiment of a screen
showing transaction times for different captured packet flows.

FIG. 14 illustrates one example embodiment of a screen
showing optional data and/or functionality that may be shared
utilizing the remote side.

DESCRIPTION

Various example embodiments are directed to systems and
methods for delivering an application to a local side compris-
ing one or more local machines. High level functionality of
the application may be hosted by a remote side, or cloud. The
remote side may comprise one or more remote machines
(e.g., a cloud). Lower level functionality of the application
may be handled by a local side. The local side may comprise
one or more local machines, which may be in communication
with one another (e.g., via a local network.). For example, the
local side may be or comprise a network implemented by a
company, enterprise or other organization. The local and
remote sides may be in communication with one another
(e.g., viaawide area network, such as the Internet). In various
example embodiments, the local side may utilize a firewall to
block some or all forms of communication with the remote
side.

The high level functionality of the application hosted by
the remote side may include, for example, basic functionality
defining the general utility of the application. The lower level
functionality hosted by the local side may comprise functions
for accessing and manipulating local resources including
local data. For example, in various embodiments, the appli-
cation may be designed to capture and/or analyze communi-
cations packets (e.g., Internet protocol or IP packets). In these
example embodiments, the high level functionality hosted by
the remote side may define, for example, analyses that may be
performed on packet captures, searches for identifying pack-
ets having certain characteristics, operations for generating
synthetic network traffic based on packet captures, a user
interface for presenting the results of other operations, etc.
The lower level functionality may actually operate on the
packets and packet captures (e.g., local resources). For
example, the lower level functionality may define operations
used to implement the high level functionality on packets and
packet captures present on the local side (e.g., local data). The
division between high and lower level functionality may be
similar for applications directed to other computing tasks. For
example, when the application is directed to a word processor,
the high level functionality may involve different fonts, mac-
ros, formatting arrangements, spell checkers, etc. The lower
level functionality may have access to local storage to identify

US 9,106,514 B1

3

document files to be opened, perform actual modifications to
stored document files, etc. The respective high and low level
functionalities may, but need not be, application specific. For
example, low level functionality hosted on the local side may
be used with more than one application or application type.

Access to the application from the local machine may be
facilitated by a local executable and a browser. The local
executable may be implemented by the local machine and/or
another machine on the local network. The local executable
may comprise a single executable file or, in some example
embodiments, may comprise additional executable and/or
non-executable files. For example, non-executable files may
include “.dll” files or other files comprising data supporting
one or more executable files. In various example embodi-
ments, the local executable may comprise a function set with
functions for accessing and/or manipulating local resources.
The function set may be accessed externally by calling one or
more specific functions through an application programming
interface (API). In addition to the function set and the AP, the
local executable may provide an interface for making the API
accessible to outside applications and/or other executables.
The interface may be secure and, in various example embodi-
ments, may limit APl access to applications and/or
executables running on the local machine itself and/or run-
ning on other machines that are part of the local network (e.g.,
machines behind the firewall). In some example embodi-
ments, the interface may comprise web server functionality
capable of forming a secure connection via hypertext transfer
protocol (HTTP), HTTPS and/or any other suitable protocol.

The browser may serve as a link between the remote side
and the local executable. For example, in various embodi-
ments, the browser may allow the remote side to provide
instructions to the local executable without providing the
remote side with direct control over or access to local
resources. The browser itself may be executed locally by the
local machine or another machine on the local network. In
various example embodiments, the browser may be a web
browser, another type of browser and/or a dedicated custom
package. In some example embodiments, the browser may
form a secure connection with the local executable. Instruc-
tions from the remote side representing the high-level func-
tionality of the application may be received by the browser in
the form of generally executable code. In various example
embodiments, the generally executable code may be executed
without regard to hardware, operating system or other
machine-specific parameters. For example, the generally
executable code may be in the form of a scripting language
such as JAVASCRIPT.

In various example embodiments, the generally executable
code may be executed by the local machine or other local
device within the context of the browser. For example, the
browser may limit the execution of the code to prevent it from
accessing local resources, including local data, except
through the browser. When the generally executable code
needs to access local resources, it may generate instructions
to the local executable. The instructions may be passed to the
local executable by the browser (e.g., via the secure connec-
tion between the browser and the local executable). Accord-
ingly, the high level functionality of the application may be
provided through the cloud, while lower-level access to and
manipulation of local resources may be handled by the local
executable. In this manner, a provider of the application may
be able to update the application to fix bugs and/or add new
features without the need to modify application executables
or other files on every local machine that accesses the appli-
cation. Also, sensitive local data and other local resources
may remain inaccessible and/or transparent to the cloud.

10

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 illustrates one example embodiment of a computer
system 100 that delivers an application to a local machine.
The system 100 may include a local side 104 and a remote
side 106. The local side 104 may include a local network 116
facilitating communication between a plurality of local
machines 110. The local machines 110 may include any suit-
able types of computer devices or machines including, for
example, laptop computers, desktop computers, servers,
databases or other data stores, etc. Although the local side 104
is illustrated in FIG. 1 to include a network 114 and multiple
local machines 110, in some example embodiments, the local
side 104 may include a single local machine 110. The remote
side 106 may include one or more remote machines 112,
which may include any types of computer devices and/or
constructs including, for example, servers, other computers,
data stores, etc. The remote machines 112 may be physically
located at a single location, or may be distributed across two
or more physical locations. The remote side 106 and the local
side 104 maybe in communication with one another via a
network 108, which may be a wide area network (WAN) such
as the Internet. The local side 104 may be separated from the
network 108 by a firewall 102. The firewall 102 may screen
communications (e.g., packets) to and from local machines
110, for example, to prevent malicious access to the local
machines 110.

FIG. 2 illustrates one example embodiment of a network
200 showing the execution of a local application 210 and a
browser 208, such as a web browser. The local application
210 is shown with access to local resources 212. The local
resources may include, for example, local data, local input/
output devices, such as printers, local data storage, etc. It will
be appreciated that the browser 208, local application 210 and
local resources 212 may be stored and/or hosted at any local
machine 110. In some example embodiments, the browser
208, local application 210 and local resources 212 may be
hosted at a common local machine 110. In other example
embodiments, hosting of the browser 208, local application
210 and local resources 212 may be distributed across mul-
tiple local machines 110 on the local side 104.

The browser 208 may be in communication with the
remote side 106 through the firewall 102, as indicated by
arrows 214. In some example embodiments, the firewall 102
may be configured to allow packet traffic on one or more ports
utilized by the browser 208 to access the remote side 106, as
indicated by arrows 214. For example, in some configura-
tions, the firewall 102 may be configured to allow communi-
cations to and from the browser 208 on port 80. Communi-
cation between the local application 210 and the remote side
106, on the other hand, may be blocked by the firewall 102.
For example, the local application 210 may be prevented from
communicating with any ports utilized by the browser 208.
Further, any ports that could potentially be used for commu-
nication between the local application 210 and the remote
side 106 may be blocked, as indicated by blocked arrow 216.
In this manner, remote machines 112 on the remote side 106
may be prevented from directly contacting the local applica-
tion 210 and, therefore, may be prevented from directly
accessing the local resources 212.

FIG. 3 illustrates one example embodiment of a network
300 showing the provision of an application from the remote
side 106 to the local side 104. At the local side 104, a browser
302 may be in communication with the remote side 106
through the firewall 102. For example, as described above, the
firewall 102 may be configured to allow communications on
aport or ports utilized by the browser 302 to access the remote
side 106. The browser 302 may be any suitable type of
browser. For example, the browser 302 may be a web browser

US 9,106,514 B1

5

such as, for example, INTERNET EXPLORER available
from MICROSOFT, CHROME available from GOOGLE,
FIREFOX available from MOZILLA, OPERA available
from OPERA software, SAFARI available from APPLE, etc.
In some example embodiments, the browser may be another
type of browser, and/or a custom coded interface.

Local executable 306 may be in communication with the
local resources 212, in a manner similar to the way that of
local application 210. The local executable 306 may also
implement an application programming interface (API) 308.
The API may define a function set of the local executable 306
and enable the function set to be called by external applica-
tions, such as the browser 302, as described below. In addition
to the API 308, the local executable 306 may also implement
an interface 310, illustrated as a web server in FIG. 3. The
interface may allow access to the API 308 and, in various
example embodiments, may limit access to the APl according
to predefined parameters. For example, in some embodiments
the interface 310 may limit access to the API 308 to applica-
tions hosted on the local side 104, such as the browser 302.
The interface 310 and the browser 302 may form a connection
304 allowing the browser 302 to provide instructions to the
local executable 306 according to the API 308. In various
example embodiments, the connection 304 may be secure.
For example, the connection 304 may be configured accord-
ing to any secure and/or encrypted communication standard
including, for example, Secure Sockets Layer (SSL), dual-
key encryption, etc.

In the example configuration shown in FIG. 3, the browser
302 may access an application hosted on the remote side 106.
When the remotely hosted application needs to access and/or
manipulate local resources 212, the browser 302 may gener-
ate an instruction to the local executable 306. The form of the
instruction may be defined by the API 308. The instruction
may be passed from the browser 302 to the local executable
306 via the connection 304. A return to the instruction may be
provided by the local executable 306 to the browser 302.

FIG. 4 illustrates one example embodiment of a process
flow 400 for providing a remotely hosted application to a
local machine and/or machines. Columns 402, 404 and 406
may generally indicate actors associated with the described
boxes. For example, column 402 may represent the actions of
one or more remote machines 112 on the remote side 106.
Column 404 may represent actions of the browser 302, while
column 406 may represent actions of the local executable
306. At 408, the browser 302 may request access to the
remotely hosted application. For example, a user at the
browser 302 may access an internet address associated with
the application (e.g., utilizing a Universal Resource Locator
or URL). In various example embodiments, the request 410 to
access the application may take the form ofa request to access
the internet address. The request 410 may be transmitted
across the firewall 102.

The remote side 106 may receive the request 410 at 412.
Upon receipt of the request 412, the remote side 106 may
transmit generally executable code 416 to the browser 302.
The code 416, again, may be transmitted across the firewall
102. In various example embodiments, the remote side 106
may ensure that the local side 104 is entitled to run the
application prior to sending the generally executable code.
For example, the remote side 106 may determine whether the
local side 104 and/or a specific local machine has a license to
the application, whether certain licenses are or are not in use,
etc. The generally executable code may be any sort of code
that may be executed without regard to hardware, operating
system or other machine-specific parameters. For example,
the generally executable code may be organized according to

10

15

20

25

30

35

40

45

50

55

60

65

6
a scripting language such as ECMCASCRIPT, JAVAS-
CRIPT, JSCRIPT, ACTIONSCRIPT, etc. The code 416 may
define the high level functionality of the application.

In some example embodiments, the code 416 need not be
generally executable and, instead, may be or may include a
hardware specific executable. For example, the remote side
106 may store multiple versions of the code 416, with each
version corresponding to a hardware configuration of poten-
tial local machines 110. Also, although the process flow 400
shows the browser 302 initiating access to the application, in
some example embodiments, the remote side 106 may initiate
access to the application. For example, the application may be
configured to perform certain tasks at prescheduled times.
Examples of such application example embodiments may
include, applications for testing communications traffic,
applications that scan for viruses or other malware, applica-
tions for executing packet captures at certain intervals, etc. At
418, the browser 302 may receive the generally executable
code 416.

At 420 and 424, the browser 302 and local executable 306
may generate the connection 304. The connection 304, as
described above, may be secure. It will be appreciated that the
connection 304 may be initiated by either the browser 302 or
the local executable 306. The process flow shows the initia-
tion of the connection 304 after the browser 302 receives the
code 416 from the remote side 106. In various example
embodiments, however, the connection 304 may be formed
prior to requesting application access 408, prior to receiving
the code 418 or at any other suitable time.

At 426, the browser 302 may execute the generally execut-
able code 416. In some example embodiments, the generally
executable code may be executed by the browser 302 within
the browser 302. In this manner, the browser 302 may limit
the execution of the generally executable code and prevent it
from accessing the local resources 212. During execution, the
generally executable code may have need to access the local
resources 212. For example, in the context of an application
for capturing and/or analyzing communications packets, the
generally executable code 416 may define various operations
and analyses to be performed on communications packets.
The code 416, executed within the browser 302, however,
may not have direct access to the communications packets,
which may be a local resource 212 of the local side 104.
Accordingly, the code 416 may generate and/or cause the
browser 302 to generate a resource request 428 to the local
executable 306. The resource request 428 may be of any
suitable form. For example, in various embodiments, the
resource request may be transmitted via the interface 310 to
the API 308 as a padded JavaScript Object Notation (JSONP)
object.

At 430, the local executable 306 may access and/or
manipulate a local resource in accordance with the resource
request 428. For example, when the application is directed to
capturing and/or analyzing communications packets, the
resource request 428 may call a function of the local execut-
able 306 causing the local executable to return an indication
of packet captures (pcap’s) present at local storage. Another
type of resource request 428 may call a function of the local
executable 306 causing the local executable to modify a pcap
and/or generate a report including details of a pcap at local
storage. Results 434 of the action of the local executable may
be returned to the browser 302 (e.g., executing the code 416)
at 432. At 436, the browser 302 may process the result 434.
For example, in some embodiments, the code 416 may
include functionality for presenting a user interface to a user
on the local side utilizing the result 434.

US 9,106,514 B1

7

FIG. 5 illustrates another example embodiment of a pro-
cess flow 500 for providing a remotely hosted application to
a local machine and/or machines. Like FIG. 4, FIG. 5 shows
various actions divided by example actors for performing the
actions, as indicated by columns 502, 504, 506. Column 502
may represent the actions of one or more remote machines
112 on the remote side 106. Column 504 may represent the
actions of the browser 302, while column 506 may represent
the actions of the local executable 306. In the example process
flow 500, the high level functionality of the application is
executed on the remote side 106.

At 508, the browser 302 may request access to the appli-
cation. The request 510 may take any suitable form including,
for example, the forms described above with respect to the
request 410. At 512, the remote side 106 may receive the
request. Provided that the local side 104 and/or the specific
local machine 110 is authorized to access the application, the
remote side 106 may execute the application (e.g., the high-
level functionality of the application) at 514. At 516, the high
level functionality executed on the remote side 106 may gen-
erate a request 518 to access a local resource 212. The request
518 may be provided to the browser 302, which may pass the
request 518 to the local executable 306 at 520. In various
example embodiments, the browser 302 may manipulate the
request 518 prior to sending it to the executable 306. For
example, the browser 302 may analyze the request 518 and, in
some example embodiments, may screen the request 518 for
security violations. At 524, the local executable 306 may
access and/or manipulate a local resource 212, for example,
as described above. Also, prior to sending the request, the
connection 304, secure or otherwise, may be formed between
the browser 302 and the local executable 306, for example, as
described above and shown at 526 and 528. At 525, the local
executable 306 may return results 527 of the access and/or
manipulation of local resources 212 at 525. The browser 302
may process the result 527 at 530. For example, in some
example embodiments, the high level functionality executed
by the remote side 106 may provide the browser with tem-
plates and/or other information for presenting the result 527
in a user interface at the local machine 110. In various
example embodiments, the results of processing local
resources 212 may not be sent back to the remote side 106. In
this manner, local resources 212, and permutations thereof,
may not be sent beyond the firewall 102, enhancing security.

As described above, various example embodiments of the
application described herein may be utilized to capture and/or
analyze packet traffic on a network. For example, the appli-
cation may be configured to act on local resources 212 (e.g.,
local data) to capture communications packets, perform dif-
ferent analyses of captured packets, perform searches identi-
fying packets having certain characteristics, present a user
interface showing the results of captures, searches, analyses,
etc. In various example embodiments, the application may
also generate synthetic network traffic (e.g., test packets)
based on captured packets. The synthetic network traffic may
be utilized, for example, to test a network or network appli-
cation for security, load performance, operability, interoper-
ability, etc. Example applications for performing tasks such
as these are described, for example, in commonly assigned
U.S. patent application Ser. No. 12/234,450 entitled “Test
Driven Deployment and Monitoring of Heterogeneous Net-
work Systems,” filed on Sep. 19, 2008 and incorporated
herein by reference in its entirety.

FIGS. 6-14 illustrate screen shots from a user interface for
use with an application for capturing and/or analyzing com-
munications packets. While a screen is used for illustration, it
will be appreciated that other machine and/or human inter-

10

15

20

25

30

35

40

45

50

55

60

65

8

faces may be provided including, for example, printer-based
interfaces, verbal interfaces, etc. FIG. 6 illustrates one
example embodiment of a screen 600 showing captured com-
munications packets. The screen 600 illustrates data describ-
ing three captured packets 602, 604, 608. The packets, for
example, may be considered local resources 212 (e.g., local
data). The browser 302 may receive locally executable code
416 and/or an instruction to capture the packets 602, 604, 608.
The browser 302 may pass the instruction to the local execut-
able 306 (e.g., via the connection 304, interface 310 and API
308). In response to the instruction, the local executable 306
may access local resources 212, including local data, to iso-
late the displayed packets 602, 604, 608. The packets 602,
604, 608 may be returned by the local executable 306 to the
browser 302. The browser 302 may form the packets 602,
604, 608 into the screen 600, for example, according to
instructions received directly or indirectly by the browser
302. The screen 600, for example, may be displayed on one or
more local machines 110.

FIG. 7 illustrates one example embodiment of a screen 700
showing statistics describing a packet capture. For example,
an instruction to analyze communications packets, such as
602, 604, 608 may be received by the local executable 306
from the browser 302. The local executable may extract sta-
tistics describing the packet capture and return them to the
browser 302. The browser 302 may form the results into the
user interface screen 700, which may be displayed on a local
machine 110.

FIG. 8 illustrates one example embodiment of a screen 800
showing results of a search of captured packets. The screen
800 may include a prompt 802 for receiving, via the local
machine 110, an indication of a search to be performed on
captured communications packets. Results of the search may
be displayed in window 808. For example, after search
parameters are determined (e.g., via the prompt 802), the
browser 302 may provide an instruction to the local execut-
able 306 causing the local executable 306 to perform the
search. Results of the search (e.g., packet flows) may be
provided to the browser 302, which may format the results
into a user interface, such as the screen 800. The screen 800
may also display user interface tools allowing a user of the
local machine 110 to transition between different tasks. For
example, selecting the flow tab 804 may provide an instruc-
tion to the browser 302 to display the search screen 800 as
shown. Other tabs 806 may lead a user of the local machine
110 to other functionality. FIG. 9 illustrates one example
embodiment of another view of screen 800 showing the
search results of FIG. 8 with additional detail. For example, a
user of the local machine 110 may cause the screen 800 to
display by selecting one of the packet flows of the screen 800.
Selecting a packet flow may cause additional information
about the packet flow to be displayed at field 902. For
example, selecting a packet flow from the search results of
FIG. 8 may prompt the executed code 416 and/or remote side
106 to generate an instruction requesting additional informa-
tion about the selected packet flow. The instruction may be
provided to the local executable 302, which may operate on
local resources 212 to extract the additional information and
provide it to the browser 302. The browser 302 may incorpo-
rate the additional information into the screen 800, as shown.

FIG. 10 illustrates one example embodiment of a screen
1000 showing results of analysis of captured packets. For
example, the screen 1000 may include a window 1002 show-
ing network arranged based on the number of packets origi-
nated and/or received by each node. For example, this data
may be extracted from local resources 212 by the local
executable 206 and formed into the screen 1000 by the

US 9,106,514 B1

9

browser 302 (e.g., based on the execution of the code 416
and/or from instructions received from the remote side). FIG.
11 illustrates one example embodiment of a screen 1100
showing results of a packet traffic analysis. The screen 1100
includes a graph 1102 showing a number of packet flows per
minute present on a network over time. For example, the local
executable 306 may receive an instruction to monitor the
network traftic from the browser 302. Results of the monitor-
ing may be returned to the browser 302, which may incorpo-
rate the results to form the screen 1100 as shown.

FIG. 12 illustrates one example embodiment of a screen
1200 showing an analysis of bandwidth usage by different
network nodes. The screen 1200 includes a window 1202
showing a graphical representation of bandwidth usage. For
example, the local executable 306 may receive an instruction
from the browser 302 causing the local executable 306 to
monitor the bandwidth usage of all or a portion of network
nodes. Results of the monitoring may be provided by the local
executable 306 to the browser 302, which may generate the
screen 1200. FIG. 13 illustrates one example embodiment of
a screen 1300 showing transaction times for different cap-
tured packet flows. Again, the transaction times may be moni-
tored by the local executable 302 in response to an instruction
from the browser 302. Results of the monitoring may be
returned to the browser 302, which may generate the screen
1300.

FIG. 14 illustrates one example embodiment of a screen
1400 showing optional data and/or functionality that may be
shared utilizing the remote side 106. For example, a user at a
local machine 110 may choose to share certain data, results,
or functionality generated on the local sided 104 with other
users on other networks. Such data or analysis, for example,
may be nonsensitive and/or may be scrubbed of sensitive
content.

Different computer systems such as local machines 110 on
the local side 104 and remote machines 112 on the remote
side 106 are described herein as communicating with one
another. It will be appreciated that this communication may
take place in any suitable method. For example, in some
example embodiments, some or all of the computer systems
described herein may be in communication with one another
via a network or networks. The network or networks may
operate according to any suitable wired or wireless commu-
nication protocol and may utilize any suitable hardware or
software. In some example embodiments, the network or
networks may include, a wide area network (WAN) such as
the Internet, a local area network (LAN), etc.

When communications between the machines 110, 112
take place over the Internet or other public network, it will be
appreciated that these communications may be encrypted.
For example, one or more of the systems may utilize an
asymmetric or public key infrastructure (PKI) method.
According to a PKI system, each system may have a public
key that may be used for encrypting messages and a private
key that may be used for decryption. The public key may be
provided to any systems having need to send data to the first
system. The data may be encrypted with the public key such
that it may only be decrypted with the private key, which may
be kept secret by the receiving system. In this manner, all
communications between the various systems may be
decrypted only by their intended recipients.

The examples presented herein are intended to illustrate
potential and specific implementations of the present inven-
tion. It can be appreciated that the examples are intended
primarily for purposes of illustration of the invention for
those skilled in the art. No particular aspect or aspects of the
examples are necessarily intended to limit the scope of the

10

15

20

25

30

35

40

45

50

55

60

65

10

present invention. For example, no particular aspect or
aspects of the examples of system architectures, methods or
processing structures described herein are necessarily
intended to limit the scope of the invention. Also, while spe-
cific testing applications have been described herein, it will be
appreciated that the applications provided according to the
description herein may include other testing applications as
well as non-testing applications, such as word processors,
virus scanning software, etc.

Itis to be understood that the figures and descriptions of the
present invention have been simplified to illustrate elements
that are relevant for a clear understanding of the present
invention, while eliminating, for purposes of clarity, other
elements. Those of ordinary skill in the art will recognize,
however, that these sorts of focused descriptions would not
facilitate a better understanding of the present invention, and
therefore, a more detailed description of such elements is not
provided herein.

Moreover, the processes associated with the present
example embodiments may be executed by programmable
equipment, such as computers. Software or other sets of
instructions that may be employed to cause programmable
equipment to execute the processes. The processes may be
stored in any storage device, such as, for example, a computer
system (non-volatile) memory, an optical disk, magnetic tape,
or magnetic disk. Furthermore, some of the processes may be
programmed when the computer system is manufactured or
via a computer-readable memory medium.

It can also be appreciated that certain process aspects
described herein may be performed using instructions stored
on a computer-readable memory medium or media that direct
a computer or computer system to perform process steps. A
computer-readable medium may include, for example, any
non-transitory media such as, for example, memory devices
such as diskettes, compact discs of both read-only and read/
write varieties, optical disk drives, and hard disk drives. A
computer-readable medium may also include memory stor-
age that may be physical, virtual, permanent, temporary,
semi-permanent and/or semi-temporary. It will be appreci-
ated that the term non-transitory refers to the medium and not
to any data stored thereon. For example, a random access
memory (RAM) is non-transitory, although the data stored
thereon may change regularly.

A “computer,” “machine,” “computer device,” “host,”
“engine,” or “processor” may be, for example and without
limitation, a processor, microcomputer, minicomputer,
server, mainframe, laptop, personal data assistant (PDA),
wireless e-mail device, cellular phone, pager, processor, fax
machine, scanner, or any other programmable device config-
ured to transmit and/or receive data over a network. Computer
systems and computer-based devices disclosed herein may
include memory for storing certain software applications
used in obtaining, processing, and communicating informa-
tion. It can be appreciated that such memory may be internal
or external with respect to operation of the disclosed example
embodiments. The memory may also include any means for
storing software, including a hard disk, an optical disk, floppy
disk, ROM (read only memory), RAM (random access
memory), PROM (programmable ROM), EEPROM (electri-
cally erasable PROM) and/or other computer-readable
memory media.

In various example embodiments of the present invention,
asingle component may be replaced by multiple components,
and multiple components may be replaced by a single com-
ponent, to perform a given function or functions. Except
where such substitution would not be operative to practice
embodiments of the present invention, such substitution is

2

US 9,106,514 B1

11

within the scope of the present invention. Any of the servers or
computer systems described herein, for example, may be
replaced by a “server farm” or other grouping of networked
servers (e.g., a group of server blades) that are located and
configured for cooperative functions. It can be appreciated
that a server farm may serve to distribute workload between/
among individual components of the farm and may expedite
computing processes by harnessing the collective and coop-
erative power of multiple servers. Such server farms may
employ load-balancing software that accomplishes tasks such
as, for example, tracking demand for processing power from
different machines, prioritizing and scheduling tasks based
on network demand, and/or providing backup contingency in
the event of component failure or reduction in operability.

Various example embodiments of the systems and methods
described herein may employ one or more electronic com-
puter networks to promote communication among different
components, transfer data, or to share resources and informa-
tion. Such computer networks can be classified according to
the hardware and software technology that is used to inter-
connect the devices in the network, such as optical fiber,
Ethernet, wireless LAN, HomePNA, power line communica-
tion or G.hn. The computer networks may also be embodied
as one or more of the following types of networks: local area
network (LAN); metropolitan area network (MAN); wide
area network (WAN); virtual private network (VPN); storage
area network (SAN); or global area network (GAN), among
other network varieties.

For example, a WAN computer network may cover a broad
area by linking communications across metropolitan,
regional, or national boundaries. The network may use rout-
ers and/or public communication links. One type of data
communication network may cover a relatively broad geo-
graphic area (e.g., city-to-city or country-to-country) which
uses transmission facilities provided by common carriers,
such as telephone service providers. In another example, a
GAN computer network may support mobile communica-
tions across multiple wireless LANs or satellite networks. In
another example, a VPN computer network may include links
between nodes carried by open connections or virtual circuits
in another network (e.g., the Internet) instead of by physical
wires. The link-layer protocols of the VPN can be tunneled
through the other network. One VPN application can promote
secure communications through the Internet. The VPN can
also be used to separately and securely conduct the traffic of
different user communities over an underlying network. The
VPN may provide users with the virtual experience of access-
ing the network through an IP address location other than the
actual IP address which connects the access device to the
network.

Computer networks may include hardware elements to
interconnect network nodes, such as network interface cards
(NICs) or Ethernet cards, repeaters, bridges, hubs, switches,
routers, and other like components. Such elements may be
physically wired for communication and/or data connections
may be provided with microwave links (e.g., IEEE 802.12) or
fiber optics, for example. A network card, network adapter or
NIC can be designed to allow computers to communicate
over the computer network by providing physical access to a
network and an addressing system through the use of MAC
addresses, for example. A repeater can be embodied as an
electronic device that receives and retransmits a communi-
cated signal at a boosted power level to allow the signal to
cover a telecommunication distance with reduced degrada-
tion. A network bridge can be configured to connect multiple
network segments at the data link layer of a computer network
while learning which addresses can be reached through which

10

15

20

25

30

35

40

45

50

55

60

65

12

specific ports of the network. In the network, the bridge may
associate a port with an address and then send traffic for that
address only to that port. In various example embodiments,
local bridges may be employed to directly connect local area
networks (LLANs); remote bridges can be used to create a wide
area network (WAN) link between LANs; and/or, wireless
bridges can be used to connect LANs and/or to connect
remote stations to LANSs.

In various example embodiments, a hub may be employed
which contains multiple ports. For example, when a data
packet arrives at one port of a hub, the packet can be copied
unmodified to all ports of the hub for transmission. A network
switch or other devices that forward and filter OSI layer 2
datagrams between ports based on MAC addresses in data
packets can also be used. A switch can possess multiple ports,
such that most of the network is connected directly to the
switch, or another switch that is in turn connected to a switch.
The term “switch” can also include routers and bridges, as
well as other devices that distribute data traffic by application
content (e.g., a Web URL identifier). Switches may operate at
one or more OSI model layers, including physical, data link,
network, or transport (i.e., end-to-end). A device that operates
simultaneously at more than one of these layers can be con-
sidered a multilayer switch. In certain example embodiments,
routers or other like networking devices may be used to for-
ward data packets between networks using headers and for-
warding tables to determine an optimum path through which
to transmit the packets.

As employed herein, an application server may be a server
that hosts an API, such as the API 308, to expose business
logic and business processes for use by other applications.
Examples of application servers include J2EE or Java EE 5
application servers including WebSphere Application Server.
Other examples include WebSphere Application Server Com-
munity Edition (IBM), Sybase Enterprise Application Server
(Sybase Inc), WebLogic Server (BEA), JBoss (Red Hat),
JRun (Adobe Systems), Apache Geronimo (Apache Software
Foundation), Oracle OC4J (Oracle Corporation), Sun Java
System Application Server (Sun Microsystems), and SAP
Netweaver AS (ABAP/Java). Also, application servers may
be provided in accordance with the NET framework, includ-
ing the Windows Communication Foundation, NET Remot-
ing, ADO.NET, and ASPNET among several other compo-
nents. For example, a Java Server Page (JSP) is a servlet that
executes in a web container which is functionally equivalent
to CGI scripts. JSPs can be used to create HTML pages by
embedding references to the server logic within the page. The
application servers may mainly serve web-based applica-
tions, while other servers can perform as session initiation
protocol servers, for instance, or work with telephony net-
works. Specifications for enterprise application integration
and service-oriented architecture can be designed to connect
many different computer network elements. Such specifica-
tions include Business Application Programming Interface,
Web Services Interoperability, and Java EE Connector Archi-
tecture.

Any patent, publication, or other disclosure material, in
whole or in part, that is said to be incorporated by reference
herein is incorporated herein only to the extent that the incor-
porated materials does not conflict with existing definitions,
statements, or other disclosure material set forth in this dis-
closure. As such, and to the extent necessary, the disclosure as
explicitly set forth herein supersedes any conflicting material
incorporated herein by reference. Any material, or portion
thereof, that is said to be incorporated by reference herein, but
which conflicts with existing definitions, statements, or other
disclosure material set forth herein will only be incorporated

US 9,106,514 B1

13

to the extent that no conflict arises between that incorporated
material and the existing disclosure material.

While various example embodiments of the invention have
been described herein, it should be apparent, however, that
various modifications, alterations and adaptations to those
embodiments may occur to persons skilled in the art with the
attainment of some or all of the advantages of the present
invention. The disclosed example embodiments are therefore
intended to include all such modifications, alterations and
adaptations without departing from the scope and spirit of the
present invention as set forth in the appended claims.

I claim:

1. A computer-implemented method for receiving and
executing an application from at least one remote machine,
the method comprising:

executing, by a computer device, a local executable,

wherein the local executable has access to local
resources of the computer device, wherein the first com-
puter machine comprises at least one processor and
operatively associated memory;

executing a browser, by the computer device, wherein the

browser is configured to communicate with at least one
remote machine through a firewall;
generating a connection between the browser and the local
executable not running in the browser, wherein the local
executable has access to local resources of the computer
device that code running in the browser is not authorized to
access;
downloading code for implementing a portion of the appli-
cation wherein the code is downloaded from the at least
one remote machine through the firewall;

executing the code in the browser; and

generating, by the browser, an instruction directing the

local executable to act on the local resources of the

computer device and to:

communicate the instruction to the local executable via
the connection;

act, by the local executable, on the local resources of the

computer device in response to the instruction, wherein

the act comprises generating synthetic network traffic

based on at least one communication packet; and

return to the browser results of the action of the local
executable on the local resources.

2. The method of claim 1, wherein the local resources of the
computer device comprise resources hosted by the computer
device and resources hosted by at least one second computer
device in communication with the computer device, wherein
the computer device and the at least one second computer
device are both separated from the at least one remote
machine by the firewall.

3. The method of claim 1, wherein the local resources
comprise communications packets.

4. The method of claim 1, wherein the act performed by the
local executable on the local resources further comprises at
least one action selected from the group consisting of: cap-
turing at least one communications packet; searching a plu-
rality of communications packets; and formatting at least one
communications packet.

5. The method of claim 1, wherein executing the code in the
browser comprises executing the code such that operations of
the code are prevented from acting on the local resources
except through the browser.

6. The method of claim 1, wherein the local executable is
configured to implement an application programming inter-
face (API), and wherein the instruction is communicated to
the local executable via the API.

20

35

40

45

50

55

14

7. The method of claim 1, wherein the local executable is
configured to implement a web server, and wherein the con-
nection between the browser and the local executable is main-
tained through the web server.

8. The method of claim 1, wherein the connection between
the browser and the local executable is a secure connection.

9. The method of claim 1, further comprising reporting, by
the browser, the results of the action of the local executable
through a user interface, wherein the user interface is defined
by the code.

10. The method of claim 1, wherein the application is
configured to perform at least one task selected from the
group consisting of communications packet capture, commu-
nications packet analysis, word processing, and virus scan-
ning.

11. The method of claim 1, wherein the code is generally
executable.

12. The method of claim 1, wherein the code is formatted
according to the JAVASCRIPT scripting language.

13. The method of claim 1, further comprising download-
ing the local executable from the remote machine through the
firewall.

14. A computer-implemented method for providing an
application to at least one local computer device, the method
comprising:

transmitting, by a computer device to a browser executing

on the at least one local machine, code for implementing
a portion of the application, and wherein the code is
configured to be executed in the browser to cause the
browser to:
generate an instruction directing a local executable to act on
local resources of the computer device, wherein the local
executable is not running in the browser and is configured to
access the local resources, and wherein the acting on local
resources comprises generating synthetic network traffic
based on at least one communication packet;
generate a connection between the browser and the local
executable, wherein the local executable has access to
local resources of the computer device that code running
in the browser is not authorized to access;

communicate the instruction to the local executable via the
connection;

receive, from the local executable, a result of the action of

the local executable on the local resources.

15. The method of claim 14, further comprising transmit-
ting the local executable to the local computer device.

16. The method of claim 14, wherein the local resources
comprise communications packets.

17. The method of claim 14, wherein the local resources are
separated from the computer device by a firewall.

18. A computer system for hosting and executing an appli-
cation, the computer system comprising:

at least one remote machine comprising at least one pro-

cessor and operatively associated memory, wherein the

at least one remote machine is programmed to transmit

code for implementing a portion of the application; and

at least one local machine comprising at least one proces-

sor and operatively associated memory, wherein the at

least one local machine is programmed to:

execute a local executable not running in the browser,
wherein the local executable has access to local
resources of the at least one local machine;

execute a browser, wherein the browser is configured to
communicate with the at least one remote machine
through a firewall;

generate a connection between the browser and the local
executable not running in the browser, wherein the

US 9,106,514 B1

15

local executable has access to local resources of the
computer device that code running in the browser is
not authorized to access; download the code for
implementing a portion of the application from the at
least one remote machine through the firewall;
execute the code in the browser;
generate, by the browser, an instruction directing the
local executable to act on the local resources of the at
least one local machine to:
communicate the instruction to the local executable
via the connection;
act, by the local executable, on the local resources of
the computer device in response to the instruction,
wherein the act comprises generating synthetic net-
work traffic based on the at least one communica-
tion packet; and
return to the browser, by the local executable, results
of the action of the local executable on the
resources.
19. A computer-implemented method for receiving and
executing an application from at least one remote machine,
the method comprising:
executing a local executable, wherein the local executable
has access to local resources of the computer device;

executing a browser, wherein the browser is configured to
communicate with at least one remote machine through
a firewall;

generating a connection between the browser and the local
executable, wherein the local executable has access to
local resources of the computer device that code running
in the browser is not authorized to access;

receiving through the browser and from the at least one

remote machine an instruction directing the local
executable to act on the local resources of the computer
device to:

—

5

25

30

16

communicate the instruction from the browser to the
local executable via the connection;

act, by the local executable, on the local resources of the
computer device in response to the instruction,
wherein the act comprises generating synthetic net-
work traffic based on at least one communication
packet;

return to the browser results of the action of the local
executable on the local resources.

20. The method of claim 19, wherein the local resources
comprise communications packets.

21. A computer-implemented method for providing an
application to at least one local computer device, the method
comprising:

transmitting to a browser executed by the local computer

device an instruction directing a local executable not
running in the browser to act on the local resources of the
local computer device that to code running in the
browser is not authorized to access, wherein the act
comprises generating synthetic network traffic based on
at least one communication packet; and

transmitting to the browser an instruction for processing

results of the action of the local executable on the local
resources.

22. The method of claim 21, further comprising transmit-
ting a local executable to a local computer device, wherein the
local executable is configured to access local resources of the
computer device.

23. The device of claim 21, wherein the local resources
comprise communications packets.

24. The device of claim 21, wherein the local resources are
separated from the computer device by a firewall.

#* #* #* #* #*

